Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 27

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Electron heat diffusivity in radially-bounded ergodic region of toroidal plasma

Kanno, Ryutaro*; Nunami, Masanori*; Satake, Shinsuke*; Matsuoka, Seikichi; Takamaru, Hisanori*

Nuclear Fusion, 58(1), p.016033_1 - 016033_7, 2018/01

 Times Cited Count:0 Percentile:0.01(Physics, Fluids & Plasmas)

The electron heat transport in a torus plasma which involves a radially-bounded ergodic region, where flux surfaces are partially destroyed by perturbative magnetic fields, is studied. In this paper, we have demonstrated that the radial heat conduction by the particles' parallel motion is reduced by trapped particles.

Journal Articles

Global kinetic simulations of neoclassical toroidal viscosity in low-collisional perturbed tokamak plasmas

Matsuoka, Seikichi; Idomura, Yasuhiro; Satake, Shinsuke*

Physics of Plasmas, 24(10), p.102522_1 - 102522_9, 2017/10

 Times Cited Count:4 Percentile:21.49(Physics, Fluids & Plasmas)

In axisymmetric tokamak plasmas, effects of three-dimensional non-axisymmetric magnetic field perturbations caused by error fields etc. have attracted much attention from the view point of the control of the plasma performance and instabilities. Recent studies pointed out that there exists qualitative discrepancy in predicting the collisional viscosity driven by the perturbation between a theoretical bounce-averaged model and a global kinetic simulation. Clarifying the cause of the discrepancy by understanding the underlying mechanism is a key issue to establish a reliable basis for the NTV predictions. In this work, we perform two different kinds of global kinetic simulations for the NTV. As a result, it is first demonstrated that the discrepancy arises owing to the following two mechanisms related to the global particle orbit; (1) the effective magnitude of the perturbation becomes weak due to the loss of the resonant orbit, and (2) the phase mixing along the orbit arises and generates fine scale structures, resulting the damping of the NTV.

Journal Articles

Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas

Huang, B.*; Satake, Shinsuke*; Kanno, Ryutaro*; Sugama, Hideo*; Matsuoka, Seikichi

Physics of Plasmas, 24(2), p.022503_1 - 022503_19, 2017/02

 Times Cited Count:11 Percentile:53.64(Physics, Fluids & Plasmas)

The drift kinetic equation describes the collisional (neoclassical) transport in plasmas. Recently, a novel radially-local approximation of the drift kinetic equation, which is called the zero orbit width (ZOW) model, is proposed. In this work, as a numerical verification of the neoclassical transport based on the ZOW model, we perform a series of benchmarks of the neoclassical transport and the parallel flow in three helical magnetic configurations using various types of radially-local approximation models including the ZOW model. We found that the neoclassical transport of the ZOW model can reproduce that based on the other models when the radial electric field and thus the $$E times B$$ drift is large. Also, it is demonstrated that an unphysical large radial transport, which arises in the neoclassical transport of the other models when the $$E times B$$ drift is small and compared to the magnetic drift, can be mitigated in the ZOW model.

Journal Articles

Development of a drift-kinetic simulation code for estimating collisional transport affected by RMPs and radial electric field

Kanno, Ryutaro*; Nunami, Masanori*; Satake, Shinsuke*; Matsuoka, Seikichi; Takamaru, Hisanori*

Contributions to Plasma Physics, 56(6-8), p.592 - 597, 2016/08

 Times Cited Count:2 Percentile:11.45(Physics, Fluids & Plasmas)

A drift-kinetic $$delta f$$ simulation code is developed for estimating collisional transport in quasi-steady state of toroidal plasma affected by resonant magnetic perturbations and radial electric field. In this paper, validity of the code is confirmed through several test calculations. It is found that radial electron flux is reduced by positive radial-electric field, although radial diffusion of electron is strongly affected by chaotic field-lines under an assumption of zero electric field.

Journal Articles

Radially local approximation of the drift kinetic equation

Sugama, Hideo*; Matsuoka, Seikichi; Satake, Shinsuke*; Kanno, Ryutaro*

Physics of Plasmas, 23(4), p.042502_1 - 042502_11, 2016/04

 Times Cited Count:7 Percentile:37.08(Physics, Fluids & Plasmas)

A novel radially local approximation of the drift kinetic equation is presented. The new drift kinetic equation that includes both $$rm E times B$$ and tangential magnetic drift terms is written in the conservative form and it has favorable properties for numerical simulation that any additional terms for particle and energy sources are unnecessary for obtaining stationary solutions under the radially local approximation. These solutions satisfy the intrinsic ambipolarity condition for neoclassical particle fluxes in the presence of quasisymmetry of the magnetic field strength. Also, another radially local drift kinetic equation is presented, from which the positive definiteness of entropy production due to neoclassical transport and Onsager symmetry of neoclassical transport coefficients are derived while it sacrifices the ambipolarity condition for neoclassical particle fluxes in axisymmetric and quasi-symmetric systems.

JAEA Reports

Experiments and analyses on reactivity worth of gas expansion module (GEM) in FCA XX-1 (Joint research)

Oigawa, Hiroyuki; Ando, Masaki; Iijima, Susumu; Takaki, Naoyuki*; Uematsu, Mari Marianne*

JAERI-Research 2001-036, 48 Pages, 2001/06

JAERI-Research-2001-036.pdf:2.38MB

no abstracts in English

JAEA Reports

Analysis of measurements for a Uranium-free core experiment at the BFS-2 critical assembly

Hunter

JNC TN9400 99-049, 74 Pages, 1999/04

JNC-TN9400-99-049.pdf:2.03MB

This document describes a series of calculations that were carried out to model various measurements from the BFS-58-1-I1 experiment. BFS-58-1-I1 was a mock-up of a uranium-free, Pu burning core at BFS-2, a Russian critical assembly operated by IPPE. The experiment measured values of keff, Na void reactivity worth, material sample reactivity worths and reaction rate ratios. The experiments were modelled using a number of different methods. Basic nuclear data was taken from JENDL-3.2, in either 70 or 18 groups. Cross-section data for the various material regions of the assembly were calculated by either SLAROM or CASUP; the heterogeneous structure of the core regions was modelled in these calculations, with 3 different options considered for representing the (essentially 2d) geometry of the assembly components in a 1D cell model. Whole reactor calculations of flux and keff were done using both a diffusion model (CITATION) and a transport model (TWOTRAN2), both using an RZ geometry. Reactivity worths were calculated both directly from differences in keff values and by using the exact perturbation calculations of PERKY and SN-PERT (for CITATION and TWOTRAN2, respectively). Initial calculations included a number of inaccuracies in the assembly representation, a result of communication difficulties between JNC and IPPE; these errors were removed for the final calculations that are presented. Calculations for the experiments have also been carried out in Russia (IPPE) and France (CEA) as part of an international comparison exercise, some of those results are also presented here. The calculated value of keff was 1.1%$$delta$$k/k higher than the measured value, Na void worth C/E values were $$sim$$1.06; these results were considered to be reasonable. (Discrepancies in certain Na void values were probably due to experimental causes, though the efect should be investigated in any future experiments.) several sample worth values were small compared with calculational uncertaint

JAEA Reports

Application of anisotropic neutron streaming effect in plate cell geometry to transport theory

Oigawa, Hiroyuki

JAERI-Research 98-061, 22 Pages, 1998/11

JAERI-Research-98-061.pdf:0.76MB

no abstracts in English

JAEA Reports

Improvement of numerical analysis method for FBR core characteristics (III)

Takeda, Toshikazu*; Kitada, Takanori*; *; *

PNC TJ9605 98-001, 267 Pages, 1998/03

PNC-TJ9605-98-001.pdf:11.65MB

As the improvement of numerical analysis method for FBR core characteristics, studies on several topics have been conducted; multiband method, Monte Carlo perturbation and nodal transport method. This report is composed of the following three parts. Part 1: Improvement of Reaction Rate Calculation Method in the Blanket Region Based on the Multiband Method. A method was developed for precise evaluation of the reaction rate distribution in the blanket region using the multiband method. With the 3-band parameters obtained from the ordinary fitting method, major reaction rates such as U-238 capture, U-235 fission, Pu-239 fission and U-238 fission rate distributions were analyzed. As for the nuclides to be analyzed, the elements of structure material, such as iron, nickel, chrome and sodium were considered. By the present method, all the reactions became larger at the deep region in the blanket. The maximum correction amounted as much as 5%. This tendency lessen the disagreement between the ordinary calculation and the experiment. It was made clear that the treatment in inter-band scattering term is veryimportant because it has large sensitivity on the result. An alternative method to determine the multiband parameters whieh method is based on more direct approach and is free from drawbacks in the present method, was also investigated. Part 2 : Improvement of Estimation Method for Reactivity Based on Monte-Carlo Perturbation Theory. Perturbation theory based on Monte-Carlo perturbation theory have been investigated and introduced into the calculational code. The continuous energy Monte-Carlo perturbation code has been developed by using not only the correlated sampling method which is already used before, but also the derivative operator sampling method. The Monte-Carlo perturbation code was applied to MONJU core and the calculational results were compared to the reference. The change of eigenvalue caused by the change of sodium density in the GEM or dummy ...

JAEA Reports

Improvement of numerical analysis method for FBR core characteristics (II)

Takeda, Toshikazu*; *; Kitada, Takanori*; *

PNC TJ9605 97-001, 100 Pages, 1997/03

PNC-TJ9605-97-001.pdf:2.82MB

This report is composed of the following two parts and appendix. (I)Improvement of the Method for Evaluating Reactivity Based on Monte Carlo Perturbation Theory (II)Improvement of Nodal Transport Method for 3-D Hexagonal Geometry (Appendix) Effective Cross Section of $$^{238}$$U Samples for Analyzing Doppler Reactivity in Fast Reactors Part I. Improvement of the Method for Evaluating Reactivity Bascd on Monte Carlo Perturbation Theory. Theoretical formulation in Monte Carlo perturbation method had been checked, and then introduced into a calculation code. The increase of CPU time is about 10 to 20 % compared to that if normal Monte Carlo code, in the cases of same number of history. This Monte Carlo perturbation method found to be effective, because results are almost reasonable and deviations of the results are especially small, by using the Monte Carlo perturbation code. However, there are somc cases that the results of the change of eigenvalues becomes positive or negative by changing the estimator, and there is no reasonable difference in the results between the conventional method, which does not consider the change of neutron source distribution caused by a perturbation, and the new method, which consider that change. Thus it is still necessary to check the Monte Carlo pcrturbation code. Part II. Improvement of Nodal Transport Method for 3-D Hexagonal Geometry It is certain that we can accurately evaluate hexagonal geometry FBR core by nodal transport calculation code for hexagonal-Z geometry named 'NSHEX'. However it is also found that in very heterogeneous core the results is not good enough. Because the treatment of the transverse leakage to the radial direction, which is use for evaluating intra-nodal flux distribution, is not so accurate. For the treatment of the leakage distribution, it is necessary to estimate the nodal vertex flux. In conventional method, the vertex flux estimated by the surrounding node surfacc flux around that vertex. On the contrary,

Journal Articles

Most critical geometry of a fuel solution based on the transport boundary perturbation theory

Yamamoto, Toshihiro

Journal of Nuclear Science and Technology, 33(1), p.78 - 82, 1996/01

 Times Cited Count:1 Percentile:14.44(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

None

*; *

PNC TJ2222 93-001, 88 Pages, 1993/03

PNC-TJ2222-93-001.pdf:3.54MB

None

JAEA Reports

Oral presentation

Global kinetic simulations for neoclassical toroidal viscosity in perturbed tokamak plasmas

Matsuoka, Seikichi; Idomura, Yasuhiro; Satake, Shinsuke*

no journal, , 

Effects of non-axisymmetric magnetic field perturbations have attracted much attention from the view point of the control of the plasma performance and instabilities. The perturbations cause the neoclassical toroidal viscosity (NTV) due to the non-ambipolar particle transport. Recent studies pointed out that the qualitative discrepancy of the NTV prediction exist between a theoretical bounce-averaged model and a global kinetic simulation. It is crucial to clarify the cause of the discrepancy to establish a reliable basis for the NTV predictions. In this work, we perform two types of global kinetic simulations for the NTV to investigate the discrepancy from the theoretical model. As a result, it is first demonstrated that the discrepancy arises due to the following two mechanisms; the absence of the magnetic field shear effect in the bounce-averaged model and the so-called transient particle orbit caused by the non-axisymmetric perturbations.

Oral presentation

Numerical studies on the neoclassical toroidal viscosity in low collisional plasmas by global kinetic simulations

Matsuoka, Seikichi; Idomura, Yasuhiro; Satake, Shinsuke*

no journal, , 

Effects of non-axisymmetric magnetic field perturbations in tokamak devices in which the magnetic field is axisymmetric have attracted much attention. The non-axisymmetric perturbations produces the so-called neoclassical toroidal viscosity (NTV), which is caused by collisional processes in a plasma. The NTV can make influence on the plasma rotation, which plays a key role in controlling a confinement performance and instabilities. Recently, however, it was pointed out that severe discrepancy exists with regard to the evaluation of the NTV between a Superbanana-plateau theory based on the bounce-averaged particle orbit and a global kinetic simulation. Clarifying physical mechanisms that causes the discrepancy is crucial for precise evaluation/prediction of the NTV. In this work, we perform two different types of global kinetic simulations, of which physical and numerical models are quite different from each other to resolve the issue. As a result, it is demonstrated that the discrepancy arises owing to the lack of the following two mechanisms in the theory; (1) insufficient resonance condition with regard to the precession drift, and (2) the transition processes of the particle orbit caused by the non-axisymmetric perturbations.

Oral presentation

Global kinetic effect on the collisionality dependence of the neoclassical toroidal viscosity in the superbanana-plateau regime

Matsuoka, Seikichi; Idomura, Yasuhiro; Satake, Shinsuke*

no journal, , 

Effects of non-axisymmetric magnetic field perturbations have attracted much attention from the view point of the control of the plasma performance and instabilities. Recent studies pointed out that the qualitative discrepancy of the NTV prediction exist between a theoretical bounce-averaged model and a global kinetic simulation. It is crucial to clarify the cause of the discrepancy to establish a reliable basis for the NTV predictions. In this work, we perform two types of global kinetic simulations for the NTV to investigate the discrepancy from the theoretical model. As a result, it is first demonstrated that the discrepancy arises owing to the following two mechanisms; (1) resonant structures predicted in the bounce-averaged model disappear due to the large particle orbit in the global kinetic simulations, and (2) fine scale structures are generated in the velocity space in the global kinetic simulations.

Oral presentation

Global kinetic simulation study on neoclassical toroidal viscosity

Matsuoka, Seikichi; Idomura, Yasuhiro; Satake, Shinsuke*

no journal, , 

Effects of non-axisymmetric magnetic field perturbations caused by error fields and external perturbations have attracted much attention in many axisymmetric tokamak devices such as JT-60 and ITER from the view point of the control of the plasma confinement performance and instabilities. The non-axisymmetric perturbations cause the neoclassical toroidal viscosity (NTV), and establishing a reliable basis for the evaluation/prediction of the NTV becomes important. Recent studies pointed out that the qualitative discrepancy with regard to the evaluation of the NTV exist between a widely-used superbanana-plateau theory based on the bounce-averaged model and a global kinetic simulation. Hence it is crucial to clarify the cause of the discrepancy. In this work, we perform two different types of global kinetic simulations for the NTV to investigate the discrepancy from the theoretical model. As a result, it is first demonstrated that the discrepancy arises owing to the following two mechanisms in the theory; one is the insufficient resonance condition with regard to the precession drift, and the other is the transition processes of the particle orbit caused by the non-axisymmetric perturbations.

Oral presentation

Neoclassical toroidal viscosity calculation method by a particle code based on a local approximation drift-kinetic model

Satake, Shinsuke*; Sugama, Hideo*; Kanno, Ryutaro*; Matsuoka, Seikichi; Idomura, Yasuhiro; Huang, B.*

no journal, , 

The accurate evaluation of the neoclassical toroidal viscosity (NTV) driven by non-axisymmetric external perturbation and/or error field in a tokamak plasma is an important topic in the fusion research, since it can make an influence on the plasma toroidal rotation. This has been widely done so far by analytically and numerically solving the bounce-averaged drift-kinetic equation based on the so-called local approximation, under which the radial drift the particle is neglected. Recently, we have developed two global kinetic simulations based on $$delta f$$ and full-$$f$$ models respectively. It has been shown that the so-called Superbanana-Plateau collisionality regime expected in the bounce-averaged theory, in which the NTV is independent of the collisionality, is not observed in both global kinetic simulations. On the other hand, however, the two global simulations reproduce the similar collisionality dependencies of the NTV. With regard to the discrepancy of the theory and the global kinetic simulations, it has been recently pointed out that the effect of the magnetic field shear on the toroidal precession drift is not retained in the theory. In this study, we perform particle simulations, which is based on the local approximation, for the NTV. We discuss the cause of the discrepancy of the difference between the bounce-averaged local theory and the global kinetic simulations by investigating the effect of shear on the toroidal precession drift using the local particle simulations.

27 (Records 1-20 displayed on this page)